Tetap teratur dengan koleksi Simpan dan kategorikan konten berdasarkan preferensi Anda.
Dalam Modul regresi linear, Anda telah mempelajari cara membuat model untuk membuat prediksi numerik berkelanjutan, seperti efisiensi bahan bakar mobil. Namun, bagaimana jika Anda ingin membuat model untuk menjawab pertanyaan seperti "Apakah hari ini akan hujan?" atau "Apakah email ini spam?"
Modul ini memperkenalkan jenis model regresi baru yang disebut regresi logistik yang dirancang untuk memprediksi probabilitas hasil tertentu.
[[["Mudah dipahami","easyToUnderstand","thumb-up"],["Memecahkan masalah saya","solvedMyProblem","thumb-up"],["Lainnya","otherUp","thumb-up"]],[["Informasi yang saya butuhkan tidak ada","missingTheInformationINeed","thumb-down"],["Terlalu rumit/langkahnya terlalu banyak","tooComplicatedTooManySteps","thumb-down"],["Sudah usang","outOfDate","thumb-down"],["Masalah terjemahan","translationIssue","thumb-down"],["Masalah kode / contoh","samplesCodeIssue","thumb-down"],["Lainnya","otherDown","thumb-down"]],["Terakhir diperbarui pada 2025-07-27 UTC."],[[["\u003cp\u003eThis module introduces logistic regression, a model used to predict the probability of an outcome, unlike linear regression which predicts continuous numerical values.\u003c/p\u003e\n"],["\u003cp\u003eLogistic regression utilizes the sigmoid function to calculate probability and employs log loss as its loss function.\u003c/p\u003e\n"],["\u003cp\u003eRegularization is crucial when training logistic regression models to prevent overfitting and improve generalization.\u003c/p\u003e\n"],["\u003cp\u003eThe module covers the comparison between linear and logistic regression and explores use cases for logistic regression.\u003c/p\u003e\n"],["\u003cp\u003eFamiliarity with introductory machine learning and linear regression concepts is assumed for this 35-minute module.\u003c/p\u003e\n"]]],[],null,["| **Estimated module length:** 35 minutes\n| **Learning Objectives**\n|\n| - Identify use cases for performing logistic regression.\n| - Explain how logistic regression models use the sigmoid function to calculate probability.\n| - Compare linear regression and logistic regression.\n| - Explain why logistic regression uses log loss instead of squared loss.\n| - Explain the importance of regularization when training logistic regression models.\n| **Prerequisites:**\n|\n| This module assumes you are familiar with the concepts covered in the\n| following modules:\n|\n| - [Introduction to Machine Learning](/machine-learning/intro-to-ml)\n| - [Linear regression](/machine-learning/crash-course/linear-regression)\n\nIn the [Linear regression module](/machine-learning/crash-course/linear-regression),\nyou explored how to construct a model to make continuous numerical\npredictions, such as the fuel efficiency of a car. But what if you want to build\na model to answer questions like \"Will it rain today?\" or \"Is this email spam?\"\n\nThis module introduces a new type of regression model called\n[**logistic regression**](/machine-learning/glossary#logistic_regression)\nthat is designed to predict the probability of a given outcome. \n| **Key terms:**\n|\n- [Logistic regression](/machine-learning/glossary#logistic_regression) \n[Help Center](https://support.google.com/machinelearningeducation)"]]