Tetap teratur dengan koleksi Simpan dan kategorikan konten berdasarkan preferensi Anda.
Di Modul regresi logistik, Anda telah mempelajari cara menggunakan fungsi sigmoid untuk mengonversi output model mentah menjadi nilai antara 0 dan 1 untuk membuat prediksi probabilistik—misalnya, memprediksi bahwa email tertentu memiliki peluang 75% menjadi spam. Namun, bagaimana jika sasaran Anda bukan untuk menghasilkan probabilitas, tetapi kategori—misalnya, memprediksi apakah email tertentu adalah "spam" atau "bukan spam"?
Klasifikasi adalah tugas memprediksi dari sekumpulan class (kategori) mana contoh tersebut berasal. Dalam modul ini, Anda akan mempelajari cara mengonversi model regresi logistik yang memprediksi probabilitas menjadi klasifikasi biner yang memprediksi salah satu dari dua class. Anda juga akan belajar cara memilih dan menghitung metrik yang sesuai untuk mengevaluasi kualitas terhadap prediksi model klasifikasi. Akhirnya, Anda akan mendapatkan pengantar singkat tentang klasifikasi kelas multi-kelas masalah, yang akan dibahas lebih mendalam di materi ini.
[[["Mudah dipahami","easyToUnderstand","thumb-up"],["Memecahkan masalah saya","solvedMyProblem","thumb-up"],["Lainnya","otherUp","thumb-up"]],[["Informasi yang saya butuhkan tidak ada","missingTheInformationINeed","thumb-down"],["Terlalu rumit/langkahnya terlalu banyak","tooComplicatedTooManySteps","thumb-down"],["Sudah usang","outOfDate","thumb-down"],["Masalah terjemahan","translationIssue","thumb-down"],["Masalah kode / contoh","samplesCodeIssue","thumb-down"],["Lainnya","otherDown","thumb-down"]],["Terakhir diperbarui pada 2025-07-27 UTC."],[[["\u003cp\u003eThis module focuses on converting logistic regression models into binary classification models for predicting categories instead of probabilities.\u003c/p\u003e\n"],["\u003cp\u003eYou'll learn how to determine the optimal threshold for classification, calculate and select appropriate evaluation metrics, and interpret ROC and AUC.\u003c/p\u003e\n"],["\u003cp\u003eThe module covers binary and provides an introduction to multi-class classification, building upon prior knowledge of machine learning, linear regression, and logistic regression.\u003c/p\u003e\n"],["\u003cp\u003eThe content explores methods for evaluating the quality of classification model predictions and applying them to real-world scenarios.\u003c/p\u003e\n"]]],[],null,["| **Estimated module length:** 70 minutes\n| **Learning objectives**\n|\n| - Determine an appropriate threshold for a binary classification model.\n| - Calculate and choose appropriate metrics to evaluate a binary classification model.\n| - Interpret ROC and AUC.\n| **Prerequisites:**\n|\n| This module assumes you are familiar with the concepts covered in the\n| following modules:\n|\n| - [Introduction to Machine Learning](/machine-learning/intro-to-ml)\n| - [Linear regression](/machine-learning/crash-course/linear-regression)\n| - [Logistic regression](/machine-learning/crash-course/logistic-regression)\n\nIn the [Logistic regression module](/machine-learning/crash-course/logistic-regression),\nyou learned how to use the [**sigmoid function**](/machine-learning/glossary#sigmoid-function)\nto convert raw model output to a value between 0 and 1 to make probabilistic\npredictions---for example, predicting that a given email has a 75% chance of\nbeing spam. But what if your goal is not to output probability but a\ncategory---for example, predicting whether a given email is \"spam\" or \"not spam\"?\n\n[**Classification**](/machine-learning/glossary#classification-model) is\nthe task of predicting which of a set of [**classes**](/machine-learning/glossary#class)\n(categories) an example belongs to. In this module, you'll learn how to convert\na logistic regression model that predicts a probability into a\n[**binary classification**](/machine-learning/glossary#binary-classification)\nmodel that predicts one of two classes. You'll also learn how to\nchoose and calculate appropriate metrics to evaluate the quality of a\nclassification model's predictions. Finally, you'll get a brief introduction to\n[**multi-class classification**](/machine-learning/glossary#multi-class)\nproblems, which are discussed in more depth later in the course.\n| **Key terms:**\n|\n| - [Binary classification](/machine-learning/glossary#binary-classification)\n| - [Class](/machine-learning/glossary#class)\n| - [Classification](/machine-learning/glossary#classification-model)\n| - [Multi-class classification](/machine-learning/glossary#multi-class)\n- [Sigmoid function](/machine-learning/glossary#sigmoid-function) \n[Help Center](https://support.google.com/machinelearningeducation)"]]