Whether to include the fully-connected layer at the top of the network. Defaults to True.
weights
One of None (random initialization), "imagenet" (pre-training on ImageNet), or the path to the weights file to be loaded. Defaults to "imagenet".
input_tensor
Optional Keras tensor (i.e. output of layers.Input()) to use as image input for the model.
input_shape
Optional shape tuple, only to be specified if include_top is False. It should have exactly 3 inputs channels.
pooling
Optional pooling mode for feature extraction when include_top is False. Defaults to None.
None means that the output of the model will be the 4D tensor output of the last convolutional layer.
avg means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor.
max means that global max pooling will be applied.
classes
Optional number of classes to classify images into, only to be specified if include_top is True, and if no weights argument is specified. 1000 is how many ImageNet classes there are. Defaults to 1000.
classifier_activation
A str or callable. The activation function to use on the "top" layer. Ignored unless include_top=True. Set classifier_activation=None to return the logits of the "top" layer. Defaults to 'softmax'. When loading pretrained weights, classifier_activation can only be None or "softmax".
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-06-07 UTC."],[],[],null,["# tf.keras.applications.EfficientNetB2\n\n\u003cbr /\u003e\n\n|---------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/applications/efficientnet.py#L618-L648) |\n\nInstantiates the EfficientNetB2 architecture.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.keras.applications.efficientnet.EfficientNetB2`](https://www.tensorflow.org/api_docs/python/tf/keras/applications/EfficientNetB2)\n\n\u003cbr /\u003e\n\n tf.keras.applications.EfficientNetB2(\n include_top=True,\n weights='imagenet',\n input_tensor=None,\n input_shape=None,\n pooling=None,\n classes=1000,\n classifier_activation='softmax',\n **kwargs\n )\n\n#### Reference:\n\n- [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) (ICML 2019)\n\nThis function returns a Keras image classification model,\noptionally loaded with weights pre-trained on ImageNet.\n\nFor image classification use cases, see\n[this page for detailed examples](https://keras.io/api/applications/#usage-examples-for-image-classification-models).\n\nFor transfer learning use cases, make sure to read the\n[guide to transfer learning \\& fine-tuning](https://keras.io/guides/transfer_learning/).\n| **Note:** each Keras Application expects a specific kind of input preprocessing. For EfficientNet, input preprocessing is included as part of the model (as a `Rescaling` layer), and thus [`keras.applications.efficientnet.preprocess_input`](../../../tf/keras/applications/efficientnet/preprocess_input) is actually a pass-through function. EfficientNet models expect their inputs to be float tensors of pixels with values in the `[0-255]` range.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `include_top` | Whether to include the fully-connected layer at the top of the network. Defaults to `True`. |\n| `weights` | One of `None` (random initialization), `\"imagenet\"` (pre-training on ImageNet), or the path to the weights file to be loaded. Defaults to `\"imagenet\"`. |\n| `input_tensor` | Optional Keras tensor (i.e. output of [`layers.Input()`](../../../tf/keras/Input)) to use as image input for the model. |\n| `input_shape` | Optional shape tuple, only to be specified if `include_top` is False. It should have exactly 3 inputs channels. |\n| `pooling` | Optional pooling mode for feature extraction when `include_top` is `False`. Defaults to `None`. \u003cbr /\u003e - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. |\n| `classes` | Optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. 1000 is how many ImageNet classes there are. Defaults to `1000`. |\n| `classifier_activation` | A `str` or callable. The activation function to use on the \"top\" layer. Ignored unless `include_top=True`. Set `classifier_activation=None` to return the logits of the \"top\" layer. Defaults to `'softmax'`. When loading pretrained weights, `classifier_activation` can only be `None` or `\"softmax\"`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A model instance. ||\n\n\u003cbr /\u003e"]]