Con Gemini API, puedes crear conversaciones de formato libre en varios turnos. El SDK de Firebase AI Logic simplifica el proceso administrando el estado de la conversación, por lo que, a diferencia de generateContent() (o generateContentStream()), no tienes que almacenar el historial de conversaciones por tu cuenta.
Antes de comenzar
| Haz clic en tu proveedor de Gemini API para ver el contenido y el código específicos del proveedor en esta página. |
Si aún no lo has hecho, completa la guía de introducción, en la que se describe cómo configurar tu proyecto de Firebase, conectar tu app a Firebase, agregar el SDK, inicializar el servicio de backend para el proveedor de Gemini API que elijas y crear una instancia de GenerativeModel.
Para probar y, luego, iterar tus instrucciones, e incluso obtener un fragmento de código generado, te recomendamos usar Google AI Studio.
Crea una experiencia de chat solo de texto
| Antes de probar esta muestra, completa la sección Antes de comenzar de esta guía para configurar tu proyecto y tu app. En esa sección, también harás clic en un botón para el proveedor de Gemini API que elijas, de modo que veas contenido específico del proveedor en esta página. |
Para crear una conversación de varios turnos (como un chat), comienza por inicializar el chat llamando a startChat(). Luego, usa sendMessage() para enviar un nuevo mensaje del usuario, que también agregará el mensaje y la respuesta al historial de chat.
Hay dos opciones posibles para role asociado con el contenido de una conversación:
user: Es el rol que proporciona las instrucciones. Este valor es el predeterminado para las llamadas asendMessage(), y la función arroja una excepción si se pasa un rol diferente.model: Es el rol que proporciona las respuestas. Este rol se puede usar cuando se llama astartChat()con unhistoryexistente.
Swift
Puedes llamar a startChat() y sendMessage() para enviar un mensaje nuevo del usuario:
import FirebaseAI // Initialize the Gemini Developer API backend service let ai = FirebaseAI.firebaseAI(backend: .googleAI()) // Create a `GenerativeModel` instance with a model that supports your use case let model = ai.generativeModel(modelName: "gemini-2.5-flash") // Optionally specify existing chat history let history = [ ModelContent(role: "user", parts: "Hello, I have 2 dogs in my house."), ModelContent(role: "model", parts: "Great to meet you. What would you like to know?"), ] // Initialize the chat with optional chat history let chat = model.startChat(history: history) // To generate text output, call sendMessage and pass in the message let response = try await chat.sendMessage("How many paws are in my house?") print(response.text ?? "No text in response.") Kotlin
Puedes llamar a startChat() y sendMessage() para enviar un mensaje de usuario nuevo:
// Initialize the Gemini Developer API backend service // Create a `GenerativeModel` instance with a model that supports your use case val model = Firebase.ai(backend = GenerativeBackend.googleAI()) .generativeModel("gemini-2.5-flash") // Initialize the chat val chat = generativeModel.startChat( history = listOf( content(role = "user") { text("Hello, I have 2 dogs in my house.") }, content(role = "model") { text("Great to meet you. What would you like to know?") } ) ) val response = chat.sendMessage("How many paws are in my house?") print(response.text) Java
Puedes llamar a startChat() y sendMessage() para enviar un mensaje nuevo del usuario:
ListenableFuture. // Initialize the Gemini Developer API backend service // Create a `GenerativeModel` instance with a model that supports your use case GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI()) .generativeModel("gemini-2.5-flash"); // Use the GenerativeModelFutures Java compatibility layer which offers // support for ListenableFuture and Publisher APIs GenerativeModelFutures model = GenerativeModelFutures.from(ai); // (optional) Create previous chat history for context Content.Builder userContentBuilder = new Content.Builder(); userContentBuilder.setRole("user"); userContentBuilder.addText("Hello, I have 2 dogs in my house."); Content userContent = userContentBuilder.build(); Content.Builder modelContentBuilder = new Content.Builder(); modelContentBuilder.setRole("model"); modelContentBuilder.addText("Great to meet you. What would you like to know?"); Content modelContent = userContentBuilder.build(); List<Content> history = Arrays.asList(userContent, modelContent); // Initialize the chat ChatFutures chat = model.startChat(history); // Create a new user message Content.Builder messageBuilder = new Content.Builder(); messageBuilder.setRole("user"); messageBuilder.addText("How many paws are in my house?"); Content message = messageBuilder.build(); // Send the message ListenableFuture<GenerateContentResponse> response = chat.sendMessage(message); Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() { @Override public void onSuccess(GenerateContentResponse result) { String resultText = result.getText(); System.out.println(resultText); } @Override public void onFailure(Throwable t) { t.printStackTrace(); } }, executor); Web
Puedes llamar a startChat() y sendMessage() para enviar un mensaje nuevo del usuario:
import { initializeApp } from "firebase/app"; import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai"; // TODO(developer) Replace the following with your app's Firebase configuration // See: https://firebase.google.com/docs/web/learn-more#config-object const firebaseConfig = { // ... }; // Initialize FirebaseApp const firebaseApp = initializeApp(firebaseConfig); // Initialize the Gemini Developer API backend service const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() }); // Create a `GenerativeModel` instance with a model that supports your use case const model = getGenerativeModel(ai, { model: "gemini-2.5-flash" }); async function run() { const chat = model.startChat({ history: [ { role: "user", parts: [{ text: "Hello, I have 2 dogs in my house." }], }, { role: "model", parts: [{ text: "Great to meet you. What would you like to know?" }], }, ], generationConfig: { maxOutputTokens: 100, }, }); const msg = "How many paws are in my house?"; const result = await chat.sendMessage(msg); const response = await result.response; const text = response.text(); console.log(text); } run(); Dart
Puedes llamar a startChat() y sendMessage() para enviar un mensaje de usuario nuevo:
import 'package:firebase_ai/firebase_ai.dart'; import 'package:firebase_core/firebase_core.dart'; import 'firebase_options.dart'; // Initialize FirebaseApp await Firebase.initializeApp( options: DefaultFirebaseOptions.currentPlatform, ); // Initialize the Gemini Developer API backend service // Create a `GenerativeModel` instance with a model that supports your use case final model = FirebaseAI.googleAI().generativeModel(model: 'gemini-2.5-flash'); final chat = model.startChat(); // Provide a prompt that contains text final prompt = [Content.text('Write a story about a magic backpack.')]; final response = await chat.sendMessage(prompt); print(response.text); Unity
Puedes llamar a StartChat() y SendMessageAsync() para enviar un mensaje nuevo del usuario:
using Firebase; using Firebase.AI; // Initialize the Gemini Developer API backend service var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI()); // Create a `GenerativeModel` instance with a model that supports your use case var model = ai.GetGenerativeModel(modelName: "gemini-2.5-flash"); // Optionally specify existing chat history var history = new [] { ModelContent.Text("Hello, I have 2 dogs in my house."), new ModelContent("model", new ModelContent.TextPart("Great to meet you. What would you like to know?")), }; // Initialize the chat with optional chat history var chat = model.StartChat(history); // To generate text output, call SendMessageAsync and pass in the message var response = await chat.SendMessageAsync("How many paws are in my house?"); UnityEngine.Debug.Log(response.Text ?? "No text in response."); Aprende a elegir un modelo adecuados para tu caso de uso y tu app.
Itera y edita imágenes con el chat de varios turnos
| Antes de probar esta muestra, completa la sección Antes de comenzar de esta guía para configurar tu proyecto y tu app. En esa sección, también harás clic en un botón para el proveedor de Gemini API que elijas, de modo que veas contenido específico del proveedor en esta página. |
Con el chat de varios turnos, puedes iterar con un modelo Gemini en las imágenes que genera o que proporcionas.
Asegúrate de crear una instancia de GenerativeModel, incluir responseModalities: ["TEXT", "IMAGE"]startChat() y sendMessage() para enviar mensajes de usuarios nuevos.
Swift
import FirebaseAI // Initialize the Gemini Developer API backend service // Create a `GenerativeModel` instance with a Gemini model that supports image output let generativeModel = FirebaseAI.firebaseAI(backend: .googleAI()).generativeModel( modelName: "gemini-2.0-flash-preview-image-generation", // Configure the model to respond with text and images generationConfig: GenerationConfig(responseModalities: [.text, .image]) ) // Initialize the chat let chat = model.startChat() guard let image = UIImage(named: "scones") else { fatalError("Image file not found.") } // Provide an initial text prompt instructing the model to edit the image let prompt = "Edit this image to make it look like a cartoon" // To generate an initial response, send a user message with the image and text prompt let response = try await chat.sendMessage(image, prompt) // Inspect the generated image guard let inlineDataPart = response.inlineDataParts.first else { fatalError("No image data in response.") } guard let uiImage = UIImage(data: inlineDataPart.data) else { fatalError("Failed to convert data to UIImage.") } // Follow up requests do not need to specify the image again let followUpResponse = try await chat.sendMessage("But make it old-school line drawing style") // Inspect the edited image after the follow up request guard let followUpInlineDataPart = followUpResponse.inlineDataParts.first else { fatalError("No image data in response.") } guard let followUpUIImage = UIImage(data: followUpInlineDataPart.data) else { fatalError("Failed to convert data to UIImage.") } Kotlin
// Initialize the Gemini Developer API backend service // Create a `GenerativeModel` instance with a Gemini model that supports image output val model = Firebase.ai(backend = GenerativeBackend.googleAI()).generativeModel( modelName = "gemini-2.0-flash-preview-image-generation", // Configure the model to respond with text and images generationConfig = generationConfig { responseModalities = listOf(ResponseModality.TEXT, ResponseModality.IMAGE) } ) // Provide an image for the model to edit val bitmap = BitmapFactory.decodeResource(context.resources, R.drawable.scones) // Create the initial prompt instructing the model to edit the image val prompt = content { image(bitmap) text("Edit this image to make it look like a cartoon") } // Initialize the chat val chat = model.startChat() // To generate an initial response, send a user message with the image and text prompt var response = chat.sendMessage(prompt) // Inspect the returned image var generatedImageAsBitmap = response .candidates.first().content.parts.firstNotNullOf { it.asImageOrNull() } // Follow up requests do not need to specify the image again response = chat.sendMessage("But make it old-school line drawing style") generatedImageAsBitmap = response .candidates.first().content.parts.firstNotNullOf { it.asImageOrNull() } Java
// Initialize the Gemini Developer API backend service // Create a `GenerativeModel` instance with a Gemini model that supports image output GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI()).generativeModel( "gemini-2.0-flash-preview-image-generation", // Configure the model to respond with text and images new GenerationConfig.Builder() .setResponseModalities(Arrays.asList(ResponseModality.TEXT, ResponseModality.IMAGE)) .build() ); GenerativeModelFutures model = GenerativeModelFutures.from(ai); // Provide an image for the model to edit Bitmap bitmap = BitmapFactory.decodeResource(resources, R.drawable.scones); // Initialize the chat ChatFutures chat = model.startChat(); // Create the initial prompt instructing the model to edit the image Content prompt = new Content.Builder() .setRole("user") .addImage(bitmap) .addText("Edit this image to make it look like a cartoon") .build(); // To generate an initial response, send a user message with the image and text prompt ListenableFuture<GenerateContentResponse> response = chat.sendMessage(prompt); // Extract the image from the initial response ListenableFuture<@Nullable Bitmap> initialRequest = Futures.transform(response, result -> { for (Part part : result.getCandidates().get(0).getContent().getParts()) { if (part instanceof ImagePart) { ImagePart imagePart = (ImagePart) part; return imagePart.getImage(); } } return null; }, executor); // Follow up requests do not need to specify the image again ListenableFuture<GenerateContentResponse> modelResponseFuture = Futures.transformAsync( initialRequest, generatedImage -> { Content followUpPrompt = new Content.Builder() .addText("But make it old-school line drawing style") .build(); return chat.sendMessage(followUpPrompt); }, executor); // Add a final callback to check the reworked image Futures.addCallback(modelResponseFuture, new FutureCallback<GenerateContentResponse>() { @Override public void onSuccess(GenerateContentResponse result) { for (Part part : result.getCandidates().get(0).getContent().getParts()) { if (part instanceof ImagePart) { ImagePart imagePart = (ImagePart) part; Bitmap generatedImageAsBitmap = imagePart.getImage(); break; } } } @Override public void onFailure(Throwable t) { t.printStackTrace(); } }, executor); Web
import { initializeApp } from "firebase/app"; import { getAI, getGenerativeModel, GoogleAIBackend, ResponseModality } from "firebase/ai"; // TODO(developer) Replace the following with your app's Firebase configuration // See: https://firebase.google.com/docs/web/learn-more#config-object const firebaseConfig = { // ... }; // Initialize FirebaseApp const firebaseApp = initializeApp(firebaseConfig); // Initialize the Gemini Developer API backend service const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() }); // Create a `GenerativeModel` instance with a model that supports your use case const model = getGenerativeModel(ai, { model: "gemini-2.0-flash-preview-image-generation", // Configure the model to respond with text and images generationConfig: { responseModalities: [ResponseModality.TEXT, ResponseModality.IMAGE], }, }); // Prepare an image for the model to edit async function fileToGenerativePart(file) { const base64EncodedDataPromise = new Promise((resolve) => { const reader = new FileReader(); reader.onloadend = () => resolve(reader.result.split(',')[1]); reader.readAsDataURL(file); }); return { inlineData: { data: await base64EncodedDataPromise, mimeType: file.type }, }; } const fileInputEl = document.querySelector("input[type=file]"); const imagePart = await fileToGenerativePart(fileInputEl.files[0]); // Provide an initial text prompt instructing the model to edit the image const prompt = "Edit this image to make it look like a cartoon"; // Initialize the chat const chat = model.startChat(); // To generate an initial response, send a user message with the image and text prompt const result = await chat.sendMessage([prompt, imagePart]); // Request and inspect the generated image try { const inlineDataParts = result.response.inlineDataParts(); if (inlineDataParts?.[0]) { // Inspect the generated image const image = inlineDataParts[0].inlineData; console.log(image.mimeType, image.data); } } catch (err) { console.error('Prompt or candidate was blocked:', err); } // Follow up requests do not need to specify the image again const followUpResult = await chat.sendMessage("But make it old-school line drawing style"); // Request and inspect the returned image try { const followUpInlineDataParts = followUpResult.response.inlineDataParts(); if (followUpInlineDataParts?.[0]) { // Inspect the generated image const followUpImage = followUpInlineDataParts[0].inlineData; console.log(followUpImage.mimeType, followUpImage.data); } } catch (err) { console.error('Prompt or candidate was blocked:', err); } Dart
import 'package:firebase_ai/firebase_ai.dart'; import 'package:firebase_core/firebase_core.dart'; import 'firebase_options.dart'; await Firebase.initializeApp( options: DefaultFirebaseOptions.currentPlatform, ); // Initialize the Gemini Developer API backend service // Create a `GenerativeModel` instance with a Gemini model that supports image output final model = FirebaseAI.googleAI().generativeModel( model: 'gemini-2.0-flash-preview-image-generation', // Configure the model to respond with text and images generationConfig: GenerationConfig(responseModalities: [ResponseModality.text, ResponseModality.image]), ); // Prepare an image for the model to edit final image = await File('scones.jpg').readAsBytes(); final imagePart = InlineDataPart('image/jpeg', image); // Provide an initial text prompt instructing the model to edit the image final prompt = TextPart("Edit this image to make it look like a cartoon"); // Initialize the chat final chat = model.startChat(); // To generate an initial response, send a user message with the image and text prompt final response = await chat.sendMessage([ Content.multi([prompt,imagePart]) ]); // Inspect the returned image if (response.inlineDataParts.isNotEmpty) { final imageBytes = response.inlineDataParts[0].bytes; // Process the image } else { // Handle the case where no images were generated print('Error: No images were generated.'); } // Follow up requests do not need to specify the image again final followUpResponse = await chat.sendMessage([ Content.text("But make it old-school line drawing style") ]); // Inspect the returned image if (followUpResponse.inlineDataParts.isNotEmpty) { final followUpImageBytes = response.inlineDataParts[0].bytes; // Process the image } else { // Handle the case where no images were generated print('Error: No images were generated.'); } Unity
using Firebase; using Firebase.AI; // Initialize the Gemini Developer API backend service // Create a `GenerativeModel` instance with a Gemini model that supports image output var model = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI()).GetGenerativeModel( modelName: "gemini-2.0-flash-preview-image-generation", // Configure the model to respond with text and images generationConfig: new GenerationConfig( responseModalities: new[] { ResponseModality.Text, ResponseModality.Image }) ); // Prepare an image for the model to edit var imageFile = System.IO.File.ReadAllBytes(System.IO.Path.Combine( UnityEngine.Application.streamingAssetsPath, "scones.jpg")); var image = ModelContent.InlineData("image/jpeg", imageFile); // Provide an initial text prompt instructing the model to edit the image var prompt = ModelContent.Text("Edit this image to make it look like a cartoon."); // Initialize the chat var chat = model.StartChat(); // To generate an initial response, send a user message with the image and text prompt var response = await chat.SendMessageAsync(new [] { prompt, image }); // Inspect the returned image var imageParts = response.Candidates.First().Content.Parts .OfType<ModelContent.InlineDataPart>() .Where(part => part.MimeType == "image/png"); // Load the image into a Unity Texture2D object UnityEngine.Texture2D texture2D = new(2, 2); if (texture2D.LoadImage(imageParts.First().Data.ToArray())) { // Do something with the image } // Follow up requests do not need to specify the image again var followUpResponse = await chat.SendMessageAsync("But make it old-school line drawing style"); // Inspect the returned image var followUpImageParts = followUpResponse.Candidates.First().Content.Parts .OfType<ModelContent.InlineDataPart>() .Where(part => part.MimeType == "image/png"); // Load the image into a Unity Texture2D object UnityEngine.Texture2D followUpTexture2D = new(2, 2); if (followUpTexture2D.LoadImage(followUpImageParts.First().Data.ToArray())) { // Do something with the image } Transmite la respuesta
| Antes de probar esta muestra, completa la sección Antes de comenzar de esta guía para configurar tu proyecto y tu app. En esa sección, también harás clic en un botón para el proveedor de Gemini API que elijas, de modo que veas contenido específico del proveedor en esta página. |
Puedes lograr interacciones más rápidas sin esperar el resultado completo de la generación del modelo y, en cambio, usar la transmisión para controlar los resultados parciales. Para transmitir la respuesta, llama a sendMessageStream().
¿Qué más puedes hacer?
- Aprende a contar tokens antes de enviar instrucciones largas al modelo.
- Configura Cloud Storage for Firebase para poder incluir archivos grandes en tus solicitudes multimodales y tener una solución más administrada para proporcionar archivos en las instrucciones. Los archivos pueden incluir imágenes, PDFs, videos y audio.
- Comienza a pensar en la preparación para la producción (consulta la lista de tareas de producción), que incluye lo siguiente:
- Configura Firebase App Check para proteger Gemini API contra el abuso de clientes no autorizados.
- Integra Firebase Remote Config para actualizar valores en tu app (como el nombre del modelo) sin lanzar una nueva versión de la app.
Prueba otras capacidades
- Generar texto a partir de instrucciones solo de texto
- Genera texto a partir de instrucciones con varios tipos de archivos, como imágenes, PDFs, videos y audios.
- Genera resultados estructurados (como JSON) a partir de instrucciones tanto de texto como multimodales.
- Generar imágenes a partir de instrucciones de texto (Gemini o Imagen)
- Usa herramientas (como llamadas a funciones y fundamentación con la Búsqueda de Google) para conectar un modelo Gemini a otras partes de tu app y a sistemas e información externos.
Más información para controlar la generación de contenido
- Comprende el diseño de instrucciones, incluidas las prácticas recomendadas, las estrategias y los ejemplos de instrucciones.
- Configura los parámetros del modelo, como la temperatura y la cantidad máxima de tokens de salida (para Gemini) o la relación de aspecto y la generación de personas (para Imagen).
- Usar la configuración de seguridad para ajustar la probabilidad de obtener respuestas que se puedan considerar dañinas
Más información sobre los modelos compatibles
Obtén información sobre los modelos disponibles para diversos casos de uso, sus cuotas y sus precios.Envía comentarios sobre tu experiencia con Firebase AI Logic