機器學習問題頁框簡介會說明如何判斷機器學習 (ML) 是否是合適的問題,並說明如何概述機器學習解決方案。
機器學習問題頁框簡介
除非另有註明,否則本頁面中的內容是採用創用 CC 姓名標示 4.0 授權,程式碼範例則為阿帕契 2.0 授權。詳情請參閱《Google Developers 網站政策》。Java 是 Oracle 和/或其關聯企業的註冊商標。
上次更新時間:2022-09-27 (世界標準時間)。
[null,null,["上次更新時間:2022-09-27 (世界標準時間)。"],[[["\u003cp\u003eThis course helps you identify if a problem is suitable for machine learning solutions.\u003c/p\u003e\n"],["\u003cp\u003eYou will learn how to define an ML problem, select the appropriate model, and establish success metrics.\u003c/p\u003e\n"],["\u003cp\u003eThe course provides guidance on framing your problem for machine learning and outlines the steps to build a solution.\u003c/p\u003e\n"]]],[],null,["\u003cbr /\u003e\n\n*Introduction to Machine Learning Problem Framing* teaches you how to determine\nif machine learning (ML) is a good approach for a problem and explains how to\noutline an ML solution.\n| **Estimated Course Length:** 45 minutes\n| **Objectives:**\n|\n| - Identify if ML is a good solution for a problem.\n| - Learn how to frame an ML problem.\n| - Understand how to pick the right model and define success metrics."]]