במבוא למסגרת 'למידה חישובית' יש אפשרות לקבוע אם למידה חישובית (ML) היא גישה טובה לבעיה, ואיך מוסבר בה איך לפתור פתרון של למידת מכונה.
מבוא למסגור של בעיות בלמידה חישובית
אלא אם צוין אחרת, התוכן של דף זה הוא ברישיון Creative Commons Attribution 4.0 ודוגמאות הקוד הן ברישיון Apache 2.0. לפרטים, ניתן לעיין במדיניות האתר Google Developers. Java הוא סימן מסחרי רשום של חברת Oracle ו/או של השותפים העצמאיים שלה.
עדכון אחרון: 2022-09-27 (שעון UTC).
[null,null,["עדכון אחרון: 2022-09-27 (שעון UTC)."],[[["\u003cp\u003eThis course helps you identify if a problem is suitable for machine learning solutions.\u003c/p\u003e\n"],["\u003cp\u003eYou will learn how to define an ML problem, select the appropriate model, and establish success metrics.\u003c/p\u003e\n"],["\u003cp\u003eThe course provides guidance on framing your problem for machine learning and outlines the steps to build a solution.\u003c/p\u003e\n"]]],[],null,["\u003cbr /\u003e\n\n*Introduction to Machine Learning Problem Framing* teaches you how to determine\nif machine learning (ML) is a good approach for a problem and explains how to\noutline an ML solution.\n| **Estimated Course Length:** 45 minutes\n| **Objectives:**\n|\n| - Identify if ML is a good solution for a problem.\n| - Learn how to frame an ML problem.\n| - Understand how to pick the right model and define success metrics."]]