Mantieni tutto organizzato con le raccolte Salva e classifica i contenuti in base alle tue preferenze.
Nel modulo sulla regressione logistica, hai imparato a utilizzare la funzione sigmoide per convertire l'output non elaborato del modello in un valore compreso tra 0 e 1 per fare predizioni probabilistiche, ad esempio prevedere che una determinata email abbia il 75% di probabilità di essere spam. Ma cosa succede se il tuo obiettivo non è produrre una probabilità, ma una categoria, ad esempio prevedere se una determinata email è "spam" o "non spam"?
La classificazione consiste nel predire a quale di un insieme di classi (categorie) appartiene un esempio. In questo modulo imparerai a convertire un modello di regressione logistica che prevede una probabilità in un modello di classificazione binaria che prevede una delle due classi. Imparerai inoltre scegliere e calcolare metriche appropriate per valutare la qualità le previsioni del modello di classificazione. Infine, vedremo una breve introduzione classificazione multiclasse che verranno discussi in modo più approfondito più avanti nel corso.
[null,null,["Ultimo aggiornamento 2025-07-27 UTC."],[[["\u003cp\u003eThis module focuses on converting logistic regression models into binary classification models for predicting categories instead of probabilities.\u003c/p\u003e\n"],["\u003cp\u003eYou'll learn how to determine the optimal threshold for classification, calculate and select appropriate evaluation metrics, and interpret ROC and AUC.\u003c/p\u003e\n"],["\u003cp\u003eThe module covers binary and provides an introduction to multi-class classification, building upon prior knowledge of machine learning, linear regression, and logistic regression.\u003c/p\u003e\n"],["\u003cp\u003eThe content explores methods for evaluating the quality of classification model predictions and applying them to real-world scenarios.\u003c/p\u003e\n"]]],[],null,["| **Estimated module length:** 70 minutes\n| **Learning objectives**\n|\n| - Determine an appropriate threshold for a binary classification model.\n| - Calculate and choose appropriate metrics to evaluate a binary classification model.\n| - Interpret ROC and AUC.\n| **Prerequisites:**\n|\n| This module assumes you are familiar with the concepts covered in the\n| following modules:\n|\n| - [Introduction to Machine Learning](/machine-learning/intro-to-ml)\n| - [Linear regression](/machine-learning/crash-course/linear-regression)\n| - [Logistic regression](/machine-learning/crash-course/logistic-regression)\n\nIn the [Logistic regression module](/machine-learning/crash-course/logistic-regression),\nyou learned how to use the [**sigmoid function**](/machine-learning/glossary#sigmoid-function)\nto convert raw model output to a value between 0 and 1 to make probabilistic\npredictions---for example, predicting that a given email has a 75% chance of\nbeing spam. But what if your goal is not to output probability but a\ncategory---for example, predicting whether a given email is \"spam\" or \"not spam\"?\n\n[**Classification**](/machine-learning/glossary#classification-model) is\nthe task of predicting which of a set of [**classes**](/machine-learning/glossary#class)\n(categories) an example belongs to. In this module, you'll learn how to convert\na logistic regression model that predicts a probability into a\n[**binary classification**](/machine-learning/glossary#binary-classification)\nmodel that predicts one of two classes. You'll also learn how to\nchoose and calculate appropriate metrics to evaluate the quality of a\nclassification model's predictions. Finally, you'll get a brief introduction to\n[**multi-class classification**](/machine-learning/glossary#multi-class)\nproblems, which are discussed in more depth later in the course.\n| **Key terms:**\n|\n| - [Binary classification](/machine-learning/glossary#binary-classification)\n| - [Class](/machine-learning/glossary#class)\n| - [Classification](/machine-learning/glossary#classification-model)\n| - [Multi-class classification](/machine-learning/glossary#multi-class)\n- [Sigmoid function](/machine-learning/glossary#sigmoid-function) \n[Help Center](https://support.google.com/machinelearningeducation)"]]