با مجموعهها، منظم بمانید ذخیره و طبقهبندی محتوا براساس اولویتهای شما.
این درس بر روی سوالاتی که باید در مورد داده ها و مدل خود در سیستم های تولید بپرسید تمرکز دارد.
آیا هر ویژگی مفید است؟
شما باید به طور مداوم مدل خود را کنترل کنید تا ویژگی هایی را حذف کنید که به توانایی پیش بینی مدل کمک چندانی می کنند یا هیچ کمکی نمی کنند. اگر داده های ورودی برای آن ویژگی به طور ناگهانی تغییر کند، رفتار مدل شما نیز ممکن است به طور ناگهانی به روش های نامطلوبی تغییر کند.
به سوال مرتبط زیر نیز توجه کنید:
آیا مفید بودن ویژگی هزینه گنجاندن آن را توجیه می کند؟
افزودن ویژگی های بیشتر به مدل همیشه وسوسه انگیز است. به عنوان مثال، فرض کنید ویژگی جدیدی پیدا کرده اید که اضافه شدن آن باعث می شود پیش بینی های مدل شما کمی بهتر شود. پیشبینیهای کمی بهتر مطمئناً بهتر از پیشبینیهای کمی بدتر به نظر میرسند. با این حال، ویژگی اضافی به بار تعمیر و نگهداری شما می افزاید.
آیا منبع داده شما قابل اعتماد است؟
چند سوال در مورد قابلیت اطمینان داده های ورودی شما:
آیا سیگنال همیشه در دسترس خواهد بود یا از یک منبع غیرقابل اطمینان می آید؟ به عنوان مثال:
آیا سیگنال از سروری می آید که تحت بار سنگین از کار می افتد؟
آیا سیگنال از انسان هایی می آید که هر ماه اوت به تعطیلات می روند؟
آیا سیستمی که داده های ورودی مدل شما را محاسبه می کند هرگز تغییر می کند؟ اگر چنین است:
چند وقت یکبار؟
چگونه متوجه خواهید شد که آن سیستم چه زمانی تغییر می کند؟
در نظر بگیرید کپی خود را از داده هایی که از فرآیند بالادستی دریافت می کنید ایجاد کنید. سپس، تنها زمانی به نسخه بعدی داده های بالادستی بروید که مطمئن باشید انجام این کار ایمن است.
آیا مدل شما بخشی از یک حلقه بازخورد است؟
گاهی اوقات یک مدل می تواند بر داده های آموزشی خود تأثیر بگذارد. برای مثال، نتایج برخی از مدلها به نوبه خود به ویژگیهای ورودی (مستقیم یا غیر مستقیم) همان مدل تبدیل میشوند.
گاهی اوقات یک مدل می تواند مدل دیگری را تحت تاثیر قرار دهد. برای مثال، دو مدل را برای پیشبینی قیمت سهام در نظر بگیرید:
مدل A که یک مدل پیش بینی بد است.
مدل B.
از آنجایی که مدل A باگ است، به اشتباه تصمیم به خرید سهام در سهام X میکند. این خریدها قیمت سهام X را بالا میبرد. مدل B از قیمت سهام X به عنوان یک ویژگی ورودی استفاده میکند، بنابراین مدل B میتواند به نتایج نادرستی در مورد آن برسد. ارزش سهام X. بنابراین، مدل B میتواند سهام سهام X را بر اساس رفتار باگ مدل A بخرد یا بفروشد. رفتار مدل B به نوبه خود میتواند بر مدل A تأثیر بگذارد و احتمالاً باعث ایجاد شیدایی لاله یا لغزشی در شرکت X شود. سهام
تمرین: درک خود را بررسی کنید
کدام سه مدل از مدل های زیر مستعد یک حلقه بازخورد هستند؟
یک مدل پیشبینی ترافیک که ازدحام در خروجیهای بزرگراه نزدیک ساحل را پیشبینی میکند و از اندازه جمعیت ساحل به عنوان یکی از ویژگیهای آن استفاده میکند.
برخی از مسافران ساحل احتمالاً برنامه های خود را بر اساس پیش بینی ترافیک قرار می دهند. اگر ازدحام جمعیت زیادی در ساحل وجود داشته باشد و ترافیک سنگین پیش بینی شود، بسیاری از افراد ممکن است برنامه های جایگزینی را انجام دهند. این ممکن است میزان مشارکت در ساحل را کاهش دهد و منجر به پیشبینی ترافیک سبکتر شود، که ممکن است حضور را افزایش دهد و چرخه تکرار شود.
یک مدل توصیه کتاب که بر اساس محبوبیت آنها (یعنی تعداد دفعاتی که کتابها خریداری شدهاند) رمانهایی را پیشنهاد میکند که ممکن است کاربرانش دوست داشته باشند.
توصیههای کتاب احتمالاً باعث خرید میشوند، و این فروشهای اضافی به عنوان ورودی به مدل بازگردانده میشوند، و احتمال توصیه این کتابها را در آینده بیشتر میکند.
یک مدل رتبهبندی دانشگاهی که مدارس را تا حدی بر اساس گزینش آنها رتبهبندی میکند - درصد دانشآموزانی که درخواست کردند که پذیرفته شدند.
رتبه بندی این مدل ممکن است علاقه بیشتری را به مدارس دارای رتبه برتر جلب کند و تعداد برنامه های دریافتی آنها را افزایش دهد. اگر این مدارس به همان تعداد دانش آموز پذیرش کنند، گزینش پذیری افزایش می یابد (درصد پذیرش دانش آموزان کاهش می یابد). این باعث افزایش رتبه بندی این مدارس می شود که علاقه دانش آموزان آینده را بیشتر افزایش می دهد و غیره…
یک مدل نتایج انتخابات که برنده رقابت شهرداری را با نظرسنجی از 2 درصد از رای دهندگان پس از بسته شدن صندوق ها پیش بینی می کند.
اگر مدل پیش بینی خود را تا پس از بسته شدن نظرسنجی منتشر نکند، امکان ندارد پیش بینی های آن بر رفتار رأی دهندگان تأثیر بگذارد.
یک مدل ارزش مسکن که قیمت خانه را با استفاده از اندازه (مساحت به متر مربع)، تعداد اتاق خواب و موقعیت جغرافیایی به عنوان ویژگی پیش بینی می کند.
تغییر سریع مکان، اندازه یا تعداد اتاقهای خواب خانه در پاسخ به پیشبینیهای قیمت، امکانپذیر نیست، و حلقه بازخورد را بعید میسازد. با این حال، به طور بالقوه بین اندازه و تعداد اتاق خواب ها همبستگی وجود دارد (خانه های بزرگتر احتمالاً اتاق های بیشتری دارند) که ممکن است نیاز به جداسازی داشته باشند.
مدلی با ویژگیهای چهره که تشخیص میدهد آیا فردی در عکسی لبخند میزند یا خیر، که به طور منظم در پایگاه داده عکاسی استوک آموزش داده میشود که بهطور خودکار ماهانه بهروزرسانی میشود.
در اینجا هیچ حلقه بازخوردی وجود ندارد، زیرا پیش بینی های مدل هیچ تاثیری بر پایگاه داده عکس ندارند. با این حال، نسخهسازی دادههای ورودی در اینجا یک نگرانی است، زیرا این بهروزرسانیهای ماهانه به طور بالقوه میتواند اثرات پیشبینینشدهای روی مدل داشته باشد.
تاریخ آخرین بهروزرسانی 2025-07-29 بهوقت ساعت هماهنگ جهانی.
[[["درک آسان","easyToUnderstand","thumb-up"],["مشکلم را برطرف کرد","solvedMyProblem","thumb-up"],["غیره","otherUp","thumb-up"]],[["اطلاعاتی که نیاز دارم وجود ندارد","missingTheInformationINeed","thumb-down"],["بیشازحد پیچیده/ مراحل بسیار زیاد","tooComplicatedTooManySteps","thumb-down"],["قدیمی","outOfDate","thumb-down"],["مشکل ترجمه","translationIssue","thumb-down"],["مشکل کد / نمونهها","samplesCodeIssue","thumb-down"],["غیره","otherDown","thumb-down"]],["تاریخ آخرین بهروزرسانی 2025-07-29 بهوقت ساعت هماهنگ جهانی."],[[["\u003cp\u003eContinuously monitor models in production to evaluate feature importance and potentially remove unnecessary ones, ensuring prediction quality and resource efficiency.\u003c/p\u003e\n"],["\u003cp\u003eData reliability is crucial; consider data source stability, potential changes in upstream data processes, and create local data copies to control versioning and mitigate risks.\u003c/p\u003e\n"],["\u003cp\u003eBe aware of feedback loops where a model's predictions influence future input data, potentially leading to unexpected behavior or biased outcomes, especially in interconnected systems.\u003c/p\u003e\n"],["\u003cp\u003eRegularly assess your model by asking if features are truly helpful and if their value outweighs the costs of inclusion, aiming for a balance between prediction accuracy and maintainability.\u003c/p\u003e\n"],["\u003cp\u003eEvaluate if your model is susceptible to a feedback loop and take steps to isolate it if you find it is.\u003c/p\u003e\n"]]],[],null,["This lesson focuses on the questions you should ask about your data\nand model in production systems.\n\nIs each feature helpful?\n\nYou should continuously monitor your model to remove features that contribute\nlittle or nothing to the model's predictive ability. If the input data for\nthat feature abruptly changes, your model's behavior might also abruptly\nchange in undesirable ways.\n\nAlso consider the following related question:\n\n- Does the usefulness of the feature justify the cost of including it?\n\nIt is always tempting to add more features to the model. For example,\nsuppose you find a new feature whose addition makes your model's predictions\nslightly better. Slightly better predictions certainly seem better than\nslightly worse predictions; however, the extra feature adds to your\nmaintenance burden.\n\nIs your data source reliable?\n\nSome questions to ask about the reliability of your input data:\n\n- Is the signal always going to be available or is it coming from an unreliable source? For example:\n - Is the signal coming from a server that crashes under heavy load?\n - Is the signal coming from humans that go on vacation every August?\n- Does the system that computes your model's input data ever change? If so:\n - How often?\n - How will you know when that system changes?\n\nConsider creating your own copy of the data you receive from the\nupstream process. Then, only advance to the next version of the upstream\ndata when you are certain that it is safe to do so.\n\nIs your model part of a feedback loop?\n\nSometimes a model can affect its own training data. For example, the\nresults from some models, in turn, become (directly or indirectly) input\nfeatures to that same model.\n\nSometimes a model can affect another model. For example, consider two\nmodels for predicting stock prices:\n\n- Model A, which is a bad predictive model.\n- Model B.\n\nSince Model A is buggy, it mistakenly decides to buy stock in Stock X.\nThose purchases drive up the price of Stock X. Model B uses the price\nof Stock X as an input feature, so Model B can come to some false\nconclusions about the value of Stock X. Model B could, therefore,\nbuy or sell shares of Stock X based on the buggy behavior of Model A.\nModel B's behavior, in turn, can affect Model A, possibly triggering a\n[tulip mania](https://wikipedia.org/wiki/Tulip_mania) or a slide in\nCompany X's stock.\n\nExercise: Check your understanding \nWhich **three** of the following models are susceptible to a feedback loop? \nA traffic-forecasting model that predicts congestion at highway exits near the beach, using beach crowd size as one of its features. \nSome beachgoers are likely to base their plans on the traffic forecast. If there is a large beach crowd and traffic is forecast to be heavy, many people may make alternative plans. This may depress beach turnout, resulting in a lighter traffic forecast, which then may increase attendance, and the cycle repeats. \nA book-recommendation model that suggests novels its users may like based on their popularity (i.e., the number of times the books have been purchased). \nBook recommendations are likely to drive purchases, and these additional sales will be fed back into the model as input, making it more likely to recommend these same books in the future. \nA university-ranking model that rates schools in part by their selectivity---the percentage of students who applied that were admitted. \nThe model's rankings may drive additional interest to top-rated schools, increasing the number of applications they receive. If these schools continue to admit the same number of students, selectivity will increase (the percentage of students admitted will go down). This will boost these schools' rankings, which will further increase prospective student interest, and so on... \nAn election-results model that forecasts the winner of a mayoral race by surveying 2% of voters after the polls have closed. \nIf the model does not publish its forecast until after the polls have closed, it is not possible for its predictions to affect voter behavior. \nA housing-value model that predicts house prices, using size (area in square meters), number of bedrooms, and geographic location as features. \nIt is not possible to quickly change a house's location, size, or number of bedrooms in response to price forecasts, making a feedback loop unlikely. However, there is potentially a correlation between size and number of bedrooms (larger homes are likely to have more rooms) that may need to be teased apart. \nA face-attributes model that detects whether a person is smiling in a photo, which is regularly trained on a database of stock photography that is automatically updated monthly. \nThere is no feedback loop here, as model predictions don't have any impact on the photo database. However, versioning of the input data is a concern here, as these monthly updates could potentially have unforeseen effects on the model. \n[Help Center](https://support.google.com/machinelearningeducation)"]]