例如,在一个包含三个类别的多类分类问题中,您需要对标签为 A、B 和 C 的示例进行分类,您可以将该问题转换为两个单独的二元分类问题。首先,您可以创建一个二元分类器,使用标签 A+B 和标签 C 对示例进行分类。然后,您可以创建第二个二元分类器,使用标签 A 和标签 B 重新对标记为 A+B 的示例进行分类。
[[["易于理解","easyToUnderstand","thumb-up"],["解决了我的问题","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["没有我需要的信息","missingTheInformationINeed","thumb-down"],["太复杂/步骤太多","tooComplicatedTooManySteps","thumb-down"],["内容需要更新","outOfDate","thumb-down"],["翻译问题","translationIssue","thumb-down"],["示例/代码问题","samplesCodeIssue","thumb-down"],["其他","otherDown","thumb-down"]],["最后更新时间 (UTC):2024-11-06。"],[[["\u003cp\u003eMulti-class classification extends binary classification to handle more than two classes, often by breaking the problem down into multiple binary classifications.\u003c/p\u003e\n"],["\u003cp\u003eIn multi-class classification, each example is assigned to only one class, like classifying handwritten digits (0-9).\u003c/p\u003e\n"],["\u003cp\u003eIf an example can belong to multiple classes, it's called multi-label classification, which is a distinct but related concept.\u003c/p\u003e\n"],["\u003cp\u003eMulti-class classification can be achieved by creating a series of binary classifiers, each distinguishing between a subset of classes.\u003c/p\u003e\n"]]],[],null,["# Classification: Multi-class classification\n\nMulti-class classification can be treated as an extension of\n[**binary classification**](/machine-learning/glossary#binary_classification)\nto more than two classes. If each example can only be\nassigned to one class, then the classification problem can be handled as a\nbinary classification problem, where one class contains one of the multiple\nclasses, and the other class contains all the other classes put together.\nThe process can then be repeated for each of the original classes.\n\nFor example, in a three-class multi-class classification problem,\nwhere you're classifying examples with the labels **A** , **B** , and\n**C** , you could turn the problem into two separate binary classification\nproblems. First, you might create a binary classifier that categorizes examples\nusing the label **A+B** and the label **C** . Then, you could create a second\nbinary classifier that reclassifies the examples that are labeled **A+B**\nusing the label **A** and the label **B**.\n\nAn example of a multi-class problem is a handwriting classifier that takes\nan image of a handwritten digit and decides which digit, 0-9, is represented.\n\nIf class membership isn't exclusive, which is to say, an example can be\nassigned to multiple classes, this is known as a *multi-label* classification\nproblem.\n| Multi-class classification is explored more deeply in the [Multi-class neural networks](/machine-learning/crash-course/neural-networks/multi-class) section of the [Neural Networks](/machine-learning/crash-course/neural-networks) module.\n| **Key terms:**\n|\n- [Binary classification](/machine-learning/glossary#binary_classification) \n[Help Center](https://support.google.com/machinelearningeducation)"]]