Introduction to Machine Learning Problem Framing teaches you how to determine if machine learning (ML) is a good approach for a problem and explains how to outline an ML solution.
Introduction to Machine Learning Problem Framing
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2025-02-24 UTC.
[null,null,["Last updated 2025-02-24 UTC."],[[["\u003cp\u003eThis course helps you identify if a problem is suitable for machine learning solutions.\u003c/p\u003e\n"],["\u003cp\u003eYou will learn how to define an ML problem, select the appropriate model, and establish success metrics.\u003c/p\u003e\n"],["\u003cp\u003eThe course provides guidance on framing your problem for machine learning and outlines the steps to build a solution.\u003c/p\u003e\n"]]],[],null,["\u003cbr /\u003e\n\n*Introduction to Machine Learning Problem Framing* teaches you how to determine\nif machine learning (ML) is a good approach for a problem and explains how to\noutline an ML solution.\n| **Estimated Course Length:** 45 minutes\n| **Objectives:**\n|\n| - Identify if ML is a good solution for a problem.\n| - Learn how to frame an ML problem.\n| - Understand how to pick the right model and define success metrics."]]