La classification de texte est un problème fondamental de machine learning qui s'applique à différents produits. Dans ce guide, nous avons divisé le workflow de classification de texte en plusieurs étapes. Pour chaque étape, nous avons suggéré une approche personnalisée en fonction des caractéristiques de votre ensemble de données spécifique. En particulier, en utilisant le ratio du nombre d'échantillons par rapport au nombre de mots par échantillon, nous vous suggérons un type de modèle qui vous permet d'obtenir rapidement les meilleures performances. Les autres étapes sont conçues en fonction de ce choix. Nous espérons que ce guide, le code associé et l'organigramme vous aideront à apprendre, à comprendre et à trouver une première solution rapide à votre problème de classification de texte.
Conclusion
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/07/27 (UTC).
[null,null,["Dernière mise à jour le 2025/07/27 (UTC)."],[[["\u003cp\u003eThis guide provides a structured workflow for text classification, breaking it down into manageable steps tailored to your dataset's characteristics.\u003c/p\u003e\n"],["\u003cp\u003eModel selection is guided by the ratio of samples to words per sample, helping you quickly identify a suitable model for optimal performance.\u003c/p\u003e\n"],["\u003cp\u003eThe guide includes code and a flowchart to facilitate learning, understanding, and implementing a first-cut solution for your text classification problem.\u003c/p\u003e\n"]]],[],null,["# Conclusion\n\nText classification is a fundamental machine learning problem with applications\nacross various products. In this guide, we have broken down the text\nclassification workflow into several steps. For each step, we have suggested a\ncustomized approach based on the characteristics of your specific dataset. In\nparticular, using the ratio of number of samples to the number of words per\nsample, we suggest a model type that gets you closer to the best performance\nquickly. The other steps are engineered around this choice. We hope that\nfollowing the guide, the\n[accompanying code](https://github.com/google/eng-edu/tree/master/ml/guides/text_classification),\nand the\n[flowchart](/machine-learning/guides/text-classification/step-2-5#figure-5)\nwill help you learn, understand, and get a swift first-cut solution to your text\nclassification problem."]]