Gemini models can process documents in PDF format, using native vision to understand entire document contexts. This goes beyond simple text extraction, allowing Gemini to:
- Analyze and interpret content, including text, images, diagrams, charts, and tables, even in long documents up to 1000 pages.
- Extract information into structured output formats.
- Summarize and answer questions based on both the visual and textual elements in a document.
- Transcribe document content (e.g. to HTML), preserving layouts and formatting, for use in downstream applications.
Passing inline PDF data
You can pass inline PDF data in the request to generateContent
. For PDF payloads under 20MB, you can choose between uploading base64 encoded documents or directly uploading locally stored files.
The following example shows you how to fetch a PDF from a URL and convert it to bytes for processing:
Python
from google import genai from google.genai import types import httpx client = genai.Client() doc_url = "https://discovery.ucl.ac.uk/id/eprint/10089234/1/343019_3_art_0_py4t4l_convrt.pdf" # Retrieve and encode the PDF byte doc_data = httpx.get(doc_url).content prompt = "Summarize this document" response = client.models.generate_content( model="gemini-2.5-flash", contents=[ types.Part.from_bytes( data=doc_data, mime_type='application/pdf', ), prompt]) print(response.text)
JavaScript
import { GoogleGenAI } from "@google/genai"; const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" }); async function main() { const pdfResp = await fetch('https://discovery.ucl.ac.uk/id/eprint/10089234/1/343019_3_art_0_py4t4l_convrt.pdf') .then((response) => response.arrayBuffer()); const contents = [ { text: "Summarize this document" }, { inlineData: { mimeType: 'application/pdf', data: Buffer.from(pdfResp).toString("base64") } } ]; const response = await ai.models.generateContent({ model: "gemini-2.5-flash", contents: contents }); console.log(response.text); } main();
Go
package main import ( "context" "fmt" "io" "net/http" "os" "google.golang.org/genai" ) func main() { ctx := context.Background() client, _ := genai.NewClient(ctx, &genai.ClientConfig{ APIKey: os.Getenv("GEMINI_API_KEY"), Backend: genai.BackendGeminiAPI, }) pdfResp, _ := http.Get("https://discovery.ucl.ac.uk/id/eprint/10089234/1/343019_3_art_0_py4t4l_convrt.pdf") var pdfBytes []byte if pdfResp != nil && pdfResp.Body != nil { pdfBytes, _ = io.ReadAll(pdfResp.Body) pdfResp.Body.Close() } parts := []*genai.Part{ &genai.Part{ InlineData: &genai.Blob{ MIMEType: "application/pdf", Data: pdfBytes, }, }, genai.NewPartFromText("Summarize this document"), } contents := []*genai.Content{ genai.NewContentFromParts(parts, genai.RoleUser), } result, _ := client.Models.GenerateContent( ctx, "gemini-2.5-flash", contents, nil, ) fmt.Println(result.Text()) }
REST
DOC_URL="https://discovery.ucl.ac.uk/id/eprint/10089234/1/343019_3_art_0_py4t4l_convrt.pdf" PROMPT="Summarize this document" DISPLAY_NAME="base64_pdf" # Download the PDF wget -O "${DISPLAY_NAME}.pdf" "${DOC_URL}" # Check for FreeBSD base64 and set flags accordingly if [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then B64FLAGS="--input" else B64FLAGS="-w0" fi # Base64 encode the PDF ENCODED_PDF=$(base64 $B64FLAGS "${DISPLAY_NAME}.pdf") # Generate content using the base64 encoded PDF curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent?key=$GOOGLE_API_KEY" \ -H 'Content-Type: application/json' \ -X POST \ -d '{ "contents": [{ "parts":[ {"inline_data": {"mime_type": "application/pdf", "data": "'"$ENCODED_PDF"'"}}, {"text": "'$PROMPT'"} ] }] }' 2> /dev/null > response.json cat response.json echo jq ".candidates[].content.parts[].text" response.json # Clean up the downloaded PDF rm "${DISPLAY_NAME}.pdf"
You can also read a PDF from a local file for processing:
Python
from google import genai from google.genai import types import pathlib client = genai.Client() # Retrieve and encode the PDF byte filepath = pathlib.Path('file.pdf') prompt = "Summarize this document" response = client.models.generate_content( model="gemini-2.5-flash", contents=[ types.Part.from_bytes( data=filepath.read_bytes(), mime_type='application/pdf', ), prompt]) print(response.text)
JavaScript
import { GoogleGenAI } from "@google/genai"; import * as fs from 'fs'; const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" }); async function main() { const contents = [ { text: "Summarize this document" }, { inlineData: { mimeType: 'application/pdf', data: Buffer.from(fs.readFileSync("content/343019_3_art_0_py4t4l_convrt.pdf")).toString("base64") } } ]; const response = await ai.models.generateContent({ model: "gemini-2.5-flash", contents: contents }); console.log(response.text); } main();
Go
package main import ( "context" "fmt" "os" "google.golang.org/genai" ) func main() { ctx := context.Background() client, _ := genai.NewClient(ctx, &genai.ClientConfig{ APIKey: os.Getenv("GEMINI_API_KEY"), Backend: genai.BackendGeminiAPI, }) pdfBytes, _ := os.ReadFile("path/to/your/file.pdf") parts := []*genai.Part{ &genai.Part{ InlineData: &genai.Blob{ MIMEType: "application/pdf", Data: pdfBytes, }, }, genai.NewPartFromText("Summarize this document"), } contents := []*genai.Content{ genai.NewContentFromParts(parts, genai.RoleUser), } result, _ := client.Models.GenerateContent( ctx, "gemini-2.5-flash", contents, nil, ) fmt.Println(result.Text()) }
Uploading PDFs using the File API
You can use the File API to upload larger documents. Always use the File API when the total request size (including the files, text prompt, system instructions, etc.) is larger than 20MB.
Call media.upload
to upload a file using the File API. The following code uploads a document file and then uses the file in a call to models.generateContent
.
Large PDFs from URLs
Use the File API to simplify uploading and processing large PDF files from URLs:
Python
from google import genai from google.genai import types import io import httpx client = genai.Client() long_context_pdf_path = "https://www.nasa.gov/wp-content/uploads/static/history/alsj/a17/A17_FlightPlan.pdf" # Retrieve and upload the PDF using the File API doc_io = io.BytesIO(httpx.get(long_context_pdf_path).content) sample_doc = client.files.upload( # You can pass a path or a file-like object here file=doc_io, config=dict( mime_type='application/pdf') ) prompt = "Summarize this document" response = client.models.generate_content( model="gemini-2.5-flash", contents=[sample_doc, prompt]) print(response.text)
JavaScript
import { createPartFromUri, GoogleGenAI } from "@google/genai"; const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" }); async function main() { const pdfBuffer = await fetch("https://www.nasa.gov/wp-content/uploads/static/history/alsj/a17/A17_FlightPlan.pdf") .then((response) => response.arrayBuffer()); const fileBlob = new Blob([pdfBuffer], { type: 'application/pdf' }); const file = await ai.files.upload({ file: fileBlob, config: { displayName: 'A17_FlightPlan.pdf', }, }); // Wait for the file to be processed. let getFile = await ai.files.get({ name: file.name }); while (getFile.state === 'PROCESSING') { getFile = await ai.files.get({ name: file.name }); console.log(`current file status: ${getFile.state}`); console.log('File is still processing, retrying in 5 seconds'); await new Promise((resolve) => { setTimeout(resolve, 5000); }); } if (file.state === 'FAILED') { throw new Error('File processing failed.'); } // Add the file to the contents. const content = [ 'Summarize this document', ]; if (file.uri && file.mimeType) { const fileContent = createPartFromUri(file.uri, file.mimeType); content.push(fileContent); } const response = await ai.models.generateContent({ model: 'gemini-2.5-flash', contents: content, }); console.log(response.text); } main();
Go
package main import ( "context" "fmt" "io" "net/http" "os" "google.golang.org/genai" ) func main() { ctx := context.Background() client, _ := genai.NewClient(ctx, &genai.ClientConfig{ APIKey: os.Getenv("GEMINI_API_KEY"), Backend: genai.BackendGeminiAPI, }) pdfURL := "https://www.nasa.gov/wp-content/uploads/static/history/alsj/a17/A17_FlightPlan.pdf" localPdfPath := "A17_FlightPlan_downloaded.pdf" respHttp, _ := http.Get(pdfURL) defer respHttp.Body.Close() outFile, _ := os.Create(localPdfPath) defer outFile.Close() _, _ = io.Copy(outFile, respHttp.Body) uploadConfig := &genai.UploadFileConfig{MIMEType: "application/pdf"} uploadedFile, _ := client.Files.UploadFromPath(ctx, localPdfPath, uploadConfig) promptParts := []*genai.Part{ genai.NewPartFromURI(uploadedFile.URI, uploadedFile.MIMEType), genai.NewPartFromText("Summarize this document"), } contents := []*genai.Content{ genai.NewContentFromParts(promptParts, genai.RoleUser), // Specify role } result, _ := client.Models.GenerateContent( ctx, "gemini-2.5-flash", contents, nil, ) fmt.Println(result.Text()) }
REST
PDF_PATH="https://www.nasa.gov/wp-content/uploads/static/history/alsj/a17/A17_FlightPlan.pdf" DISPLAY_NAME="A17_FlightPlan" PROMPT="Summarize this document" # Download the PDF from the provided URL wget -O "${DISPLAY_NAME}.pdf" "${PDF_PATH}" MIME_TYPE=$(file -b --mime-type "${DISPLAY_NAME}.pdf") NUM_BYTES=$(wc -c < "${DISPLAY_NAME}.pdf") echo "MIME_TYPE: ${MIME_TYPE}" echo "NUM_BYTES: ${NUM_BYTES}" tmp_header_file=upload-header.tmp # Initial resumable request defining metadata. # The upload url is in the response headers dump them to a file. curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \ -D upload-header.tmp \ -H "X-Goog-Upload-Protocol: resumable" \ -H "X-Goog-Upload-Command: start" \ -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \ -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \ -H "Content-Type: application/json" \ -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r") rm "${tmp_header_file}" # Upload the actual bytes. curl "${upload_url}" \ -H "Content-Length: ${NUM_BYTES}" \ -H "X-Goog-Upload-Offset: 0" \ -H "X-Goog-Upload-Command: upload, finalize" \ --data-binary "@${DISPLAY_NAME}.pdf" 2> /dev/null > file_info.json file_uri=$(jq ".file.uri" file_info.json) echo "file_uri: ${file_uri}" # Now generate content using that file curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent?key=$GOOGLE_API_KEY" \ -H 'Content-Type: application/json' \ -X POST \ -d '{ "contents": [{ "parts":[ {"text": "'$PROMPT'"}, {"file_data":{"mime_type": "application/pdf", "file_uri": '$file_uri'}}] }] }' 2> /dev/null > response.json cat response.json echo jq ".candidates[].content.parts[].text" response.json # Clean up the downloaded PDF rm "${DISPLAY_NAME}.pdf"
Large PDFs stored locally
Python
from google import genai from google.genai import types import pathlib import httpx client = genai.Client() # Retrieve and encode the PDF byte file_path = pathlib.Path('large_file.pdf') # Upload the PDF using the File API sample_file = client.files.upload( file=file_path, ) prompt="Summarize this document" response = client.models.generate_content( model="gemini-2.5-flash", contents=[sample_file, "Summarize this document"]) print(response.text)
JavaScript
import { createPartFromUri, GoogleGenAI } from "@google/genai"; const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" }); async function main() { const file = await ai.files.upload({ file: 'path-to-localfile.pdf' config: { displayName: 'A17_FlightPlan.pdf', }, }); // Wait for the file to be processed. let getFile = await ai.files.get({ name: file.name }); while (getFile.state === 'PROCESSING') { getFile = await ai.files.get({ name: file.name }); console.log(`current file status: ${getFile.state}`); console.log('File is still processing, retrying in 5 seconds'); await new Promise((resolve) => { setTimeout(resolve, 5000); }); } if (file.state === 'FAILED') { throw new Error('File processing failed.'); } // Add the file to the contents. const content = [ 'Summarize this document', ]; if (file.uri && file.mimeType) { const fileContent = createPartFromUri(file.uri, file.mimeType); content.push(fileContent); } const response = await ai.models.generateContent({ model: 'gemini-2.5-flash', contents: content, }); console.log(response.text); } main();
Go
package main import ( "context" "fmt" "os" "google.golang.org/genai" ) func main() { ctx := context.Background() client, _ := genai.NewClient(ctx, &genai.ClientConfig{ APIKey: os.Getenv("GEMINI_API_KEY"), Backend: genai.BackendGeminiAPI, }) localPdfPath := "/path/to/file.pdf" uploadConfig := &genai.UploadFileConfig{MIMEType: "application/pdf"} uploadedFile, _ := client.Files.UploadFromPath(ctx, localPdfPath, uploadConfig) promptParts := []*genai.Part{ genai.NewPartFromURI(uploadedFile.URI, uploadedFile.MIMEType), genai.NewPartFromText("Give me a summary of this pdf file."), } contents := []*genai.Content{ genai.NewContentFromParts(promptParts, genai.RoleUser), } result, _ := client.Models.GenerateContent( ctx, "gemini-2.5-flash", contents, nil, ) fmt.Println(result.Text()) }
REST
NUM_BYTES=$(wc -c < "${PDF_PATH}") DISPLAY_NAME=TEXT tmp_header_file=upload-header.tmp # Initial resumable request defining metadata. # The upload url is in the response headers dump them to a file. curl "${BASE_URL}/upload/v1beta/files?key=${GEMINI_API_KEY}" \ -D upload-header.tmp \ -H "X-Goog-Upload-Protocol: resumable" \ -H "X-Goog-Upload-Command: start" \ -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \ -H "X-Goog-Upload-Header-Content-Type: application/pdf" \ -H "Content-Type: application/json" \ -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r") rm "${tmp_header_file}" # Upload the actual bytes. curl "${upload_url}" \ -H "Content-Length: ${NUM_BYTES}" \ -H "X-Goog-Upload-Offset: 0" \ -H "X-Goog-Upload-Command: upload, finalize" \ --data-binary "@${PDF_PATH}" 2> /dev/null > file_info.json file_uri=$(jq ".file.uri" file_info.json) echo file_uri=$file_uri # Now generate content using that file curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent?key=$GOOGLE_API_KEY" \ -H 'Content-Type: application/json' \ -X POST \ -d '{ "contents": [{ "parts":[ {"text": "Can you add a few more lines to this poem?"}, {"file_data":{"mime_type": "application/pdf", "file_uri": '$file_uri'}}] }] }' 2> /dev/null > response.json cat response.json echo jq ".candidates[].content.parts[].text" response.json
You can verify the API successfully stored the uploaded file and get its metadata by calling files.get
. Only the name
(and by extension, the uri
) are unique.
Python
from google import genai import pathlib client = genai.Client() fpath = pathlib.Path('example.txt') fpath.write_text('hello') file = client.files.upload(file='example.txt') file_info = client.files.get(name=file.name) print(file_info.model_dump_json(indent=4))
REST
name=$(jq ".file.name" file_info.json) # Get the file of interest to check state curl https://generativelanguage.googleapis.com/v1beta/files/$name > file_info.json # Print some information about the file you got name=$(jq ".file.name" file_info.json) echo name=$name file_uri=$(jq ".file.uri" file_info.json) echo file_uri=$file_uri
Passing multiple PDFs
The Gemini API is capable of processing multiple PDF documents (up to 1000 pages) in a single request, as long as the combined size of the documents and the text prompt stays within the model's context window.
Python
from google import genai import io import httpx client = genai.Client() doc_url_1 = "https://arxiv.org/pdf/2312.11805" doc_url_2 = "https://arxiv.org/pdf/2403.05530" # Retrieve and upload both PDFs using the File API doc_data_1 = io.BytesIO(httpx.get(doc_url_1).content) doc_data_2 = io.BytesIO(httpx.get(doc_url_2).content) sample_pdf_1 = client.files.upload( file=doc_data_1, config=dict(mime_type='application/pdf') ) sample_pdf_2 = client.files.upload( file=doc_data_2, config=dict(mime_type='application/pdf') ) prompt = "What is the difference between each of the main benchmarks between these two papers? Output these in a table." response = client.models.generate_content( model="gemini-2.5-flash", contents=[sample_pdf_1, sample_pdf_2, prompt]) print(response.text)
JavaScript
import { createPartFromUri, GoogleGenAI } from "@google/genai"; const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" }); async function uploadRemotePDF(url, displayName) { const pdfBuffer = await fetch(url) .then((response) => response.arrayBuffer()); const fileBlob = new Blob([pdfBuffer], { type: 'application/pdf' }); const file = await ai.files.upload({ file: fileBlob, config: { displayName: displayName, }, }); // Wait for the file to be processed. let getFile = await ai.files.get({ name: file.name }); while (getFile.state === 'PROCESSING') { getFile = await ai.files.get({ name: file.name }); console.log(`current file status: ${getFile.state}`); console.log('File is still processing, retrying in 5 seconds'); await new Promise((resolve) => { setTimeout(resolve, 5000); }); } if (file.state === 'FAILED') { throw new Error('File processing failed.'); } return file; } async function main() { const content = [ 'What is the difference between each of the main benchmarks between these two papers? Output these in a table.', ]; let file1 = await uploadRemotePDF("https://arxiv.org/pdf/2312.11805", "PDF 1") if (file1.uri && file1.mimeType) { const fileContent = createPartFromUri(file1.uri, file1.mimeType); content.push(fileContent); } let file2 = await uploadRemotePDF("https://arxiv.org/pdf/2403.05530", "PDF 2") if (file2.uri && file2.mimeType) { const fileContent = createPartFromUri(file2.uri, file2.mimeType); content.push(fileContent); } const response = await ai.models.generateContent({ model: 'gemini-2.5-flash', contents: content, }); console.log(response.text); } main();
Go
package main import ( "context" "fmt" "io" "net/http" "os" "google.golang.org/genai" ) func main() { ctx := context.Background() client, _ := genai.NewClient(ctx, &genai.ClientConfig{ APIKey: os.Getenv("GEMINI_API_KEY"), Backend: genai.BackendGeminiAPI, }) docUrl1 := "https://arxiv.org/pdf/2312.11805" docUrl2 := "https://arxiv.org/pdf/2403.05530" localPath1 := "doc1_downloaded.pdf" localPath2 := "doc2_downloaded.pdf" respHttp1, _ := http.Get(docUrl1) defer respHttp1.Body.Close() outFile1, _ := os.Create(localPath1) _, _ = io.Copy(outFile1, respHttp1.Body) outFile1.Close() respHttp2, _ := http.Get(docUrl2) defer respHttp2.Body.Close() outFile2, _ := os.Create(localPath2) _, _ = io.Copy(outFile2, respHttp2.Body) outFile2.Close() uploadConfig1 := &genai.UploadFileConfig{MIMEType: "application/pdf"} uploadedFile1, _ := client.Files.UploadFromPath(ctx, localPath1, uploadConfig1) uploadConfig2 := &genai.UploadFileConfig{MIMEType: "application/pdf"} uploadedFile2, _ := client.Files.UploadFromPath(ctx, localPath2, uploadConfig2) promptParts := []*genai.Part{ genai.NewPartFromURI(uploadedFile1.URI, uploadedFile1.MIMEType), genai.NewPartFromURI(uploadedFile2.URI, uploadedFile2.MIMEType), genai.NewPartFromText("What is the difference between each of the " + "main benchmarks between these two papers? " + "Output these in a table."), } contents := []*genai.Content{ genai.NewContentFromParts(promptParts, genai.RoleUser), } modelName := "gemini-2.5-flash" result, _ := client.Models.GenerateContent( ctx, modelName, contents, nil, ) fmt.Println(result.Text()) }
REST
DOC_URL_1="https://arxiv.org/pdf/2312.11805" DOC_URL_2="https://arxiv.org/pdf/2403.05530" DISPLAY_NAME_1="Gemini_paper" DISPLAY_NAME_2="Gemini_1.5_paper" PROMPT="What is the difference between each of the main benchmarks between these two papers? Output these in a table." # Function to download and upload a PDF upload_pdf() { local doc_url="$1" local display_name="$2" # Download the PDF wget -O "${display_name}.pdf" "${doc_url}" local MIME_TYPE=$(file -b --mime-type "${display_name}.pdf") local NUM_BYTES=$(wc -c < "${display_name}.pdf") echo "MIME_TYPE: ${MIME_TYPE}" echo "NUM_BYTES: ${NUM_BYTES}" local tmp_header_file=upload-header.tmp # Initial resumable request curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \ -D "${tmp_header_file}" \ -H "X-Goog-Upload-Protocol: resumable" \ -H "X-Goog-Upload-Command: start" \ -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \ -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \ -H "Content-Type: application/json" \ -d "{'file': {'display_name': '${display_name}'}}" 2> /dev/null local upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r") rm "${tmp_header_file}" # Upload the PDF curl "${upload_url}" \ -H "Content-Length: ${NUM_BYTES}" \ -H "X-Goog-Upload-Offset: 0" \ -H "X-Goog-Upload-Command: upload, finalize" \ --data-binary "@${display_name}.pdf" 2> /dev/null > "file_info_${display_name}.json" local file_uri=$(jq ".file.uri" "file_info_${display_name}.json") echo "file_uri for ${display_name}: ${file_uri}" # Clean up the downloaded PDF rm "${display_name}.pdf" echo "${file_uri}" } # Upload the first PDF file_uri_1=$(upload_pdf "${DOC_URL_1}" "${DISPLAY_NAME_1}") # Upload the second PDF file_uri_2=$(upload_pdf "${DOC_URL_2}" "${DISPLAY_NAME_2}") # Now generate content using both files curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent?key=$GOOGLE_API_KEY" \ -H 'Content-Type: application/json' \ -X POST \ -d '{ "contents": [{ "parts":[ {"file_data": {"mime_type": "application/pdf", "file_uri": '$file_uri_1'}}, {"file_data": {"mime_type": "application/pdf", "file_uri": '$file_uri_2'}}, {"text": "'$PROMPT'"} ] }] }' 2> /dev/null > response.json cat response.json echo jq ".candidates[].content.parts[].text" response.json
Technical details
Gemini supports a maximum of 1,000 document pages. Each document page is equivalent to 258 tokens.
While there are no specific limits to the number of pixels in a document besides the model's context window, larger pages are scaled down to a maximum resolution of 3072x3072 while preserving their original aspect ratio, while smaller pages are scaled up to 768x768 pixels. There is no cost reduction for pages at lower sizes, other than bandwidth, or performance improvement for pages at higher resolution.
Document types
Technically, you can pass other MIME types for document understanding, like TXT, Markdown, HTML, XML, etc. However, document vision only meaningfully understands PDFs. Other types will be extracted as pure text, and the model won't be able to interpret what we see in the rendering of those files. Any file-type specifics like charts, diagrams, HTML tags, Markdown formatting, etc., will be lost.
Best practices
For best results:
- Rotate pages to the correct orientation before uploading.
- Avoid blurry pages.
- If using a single page, place the text prompt after the page.
What's next
To learn more, see the following resources:
- File prompting strategies: The Gemini API supports prompting with text, image, audio, and video data, also known as multimodal prompting.
- System instructions: System instructions let you steer the behavior of the model based on your specific needs and use cases.